Posterior Probabilities in Meta-Analysis:

An Intuitive Approach of Dealing with Publication Bias

Hilde Augusteijn

Meta-analysis & publication bias

- Meta-analysis: combining the results of multiple primary studies to:
 - Estimate effect size
 - Estimate heterogeneity
- Publication bias:
 - Overestimated effect sizes
 - Over- and underestimated levels of heterogeneity

Current methods often have problems providing accurate and intuitive results

Bayesian Meta Analytic Snapshot (BMAS)

Key message

- BMAS in an intuitive method that shows which models are most likely
- BMAS shows how much evidence there is for a model
- Provides insight in the level of (un)certainty
- Corrects for publication bias
- Sensitivity analysis to assess publication bias

Overview of today's presentation

- Introduce example
- BMAS without publication bias correction
- BMAS with correction

Example dataset

McCall & Carriger (1993)

Infant habituation & recognition memory performance as predictors of later IQ.

- 31 samples
- N differs between 11 and 143
- Correlation between r = .01 and r = .66

- 26 studies are statistically significant if tested two-sided
- 28 if tested one-sided

Random effects meta-analysis

Effect size: Medium to large

r = .407 [.341 : .469], p < .0001

Heterogeneity: Small to medium amount

$$Q(30) = 49.57, p = .0137$$

 $I^2 = 39.5\%$ [2.6%: 55.3%]

Bayesian Meta Analytic Snapshot (BMAS)

Bayes theorem

- Provide the posterior probability of 16 (4x4) models
 - Effect size (none, small, medium, large)
 - Heterogeneity (none, small, medium, large)

Bayes theorem

Comparison of Distributions

Comparison of Distributions

Bayes theorem

Start: no data

First datapoint:

$$r = 0.61$$
, $N = 11$

Second datapoint:

$$r = 0.43$$
, N = 21

Third datapoint:

$$r = 0.29$$
, N = 91

Bayesian Meta Analytic Snapshot: Uncorrected

uncorrected BMAS

model	es0	esS	esM	esL	cummulative
het 0	0	0	0.0017	0	0.0017
het S	0	0	0.0796	0.0099	0.0894
het M	0	0	0.1662	0.6932	0.8594
het L	0	0	0.0066	0.0429	0.0494
cummulative	0	0	0.2541	0.7459	1

Publication bias

• Is there publication bias?

- Overestimated effect size?
- Incorrect estimate of heterogeneity?

Correction needed!

Bayes theorem

Bayesian Meta Analytic Snapshot: Corrected

TILBURG •

Bayesian Meta Analytic Snapshot: Corrected

1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-0.5

0.0

0.5

1.0

-1.0

Start: no data

First datapoint:

$$r = 0.61$$
, $N = 11$

Bayesian Meta Analytic Snapshot: Corrected

model cummulative es0 esS esM esL het 0 0.0199 0.0199 0 0 0 het S 0 0.3349 0 0 0.3349 het M 0.5015 0.5166 2e-04 0.0147 1e-04 het L 0.0401 0.0717 0.0167 0 0.1285 cummulative 0.0403 0.0864 0.8731 2e-04 1

Result overview

Random effects:

- Medium to large effect (r = .41)
- Small to medium amount of heterogeneity ($I^2 = 39.5\%$)

Uncorrected BMAS:

- Large effect size
- Medium amount of heterogeneity

Corrected BMAS:

- Medium effect size (large effect very unlikely)
- Small to medium amount of heterogeneity

Key message

- BMAS in an intuitive method that shows which models are most likely
- BMAS shows how much evidence there is for a model
- Provides insight in the level of (un)certainty
- Corrects for publication bias
- Sensitivity analysis to assess publication bias

Future work

- Paper on properties of BMAS
- R package / Shiny app
- Other (non-uniform) priors
- Continuous version using 16 intervals?

