Effect Sizes, Power, and Biases in Intelligence Research

A Meta-Meta-Analysis

Michèle B. Nuijten, Marcel A. L. M. van Assen, Hilde E. M. Augusteijn, Elise A. V. Crompvoets, & **Jelte M. Wicherts**

Research questions

- 1) What is the typical power in studies of IQ and does power differ across different types of studies?
- 2) How severe is publication bias in intelligence research?
- 3) Is there evidence of a "decline effect" or citation bias?

Intelligence: 5 types of studies

1. Predictive validity & correlational studies

• E.g., IQ - personality

2. Group differences (clinical & non-clinical)

• E.g., IQ in healthy controls vs. schizophrenics

3. Experiments & interventions

• E.g., intervention to improve IQ

4. Toxicology

• E.g., the effect of lead exposure on IQ

5. Behavior genetics

• E.g., heritability of intelligence

Intelligence: descriptives

Type of research	# Meta- analyses	# Pri s	Vedian otal N	ledian nweighted earson's r
1. Predictive validity & correlational studies	31	781	55	26
2. Group differences (clinical & non-clinical)	59	1,249		
3. Experiments & interventions	20	185	49	18
4. Toxicology	16	169	60	15
5. (Behavior) genetics	5	59	169	07
Total	131	2,439	60	2.5

Straightforward methodologies most popular

N is typically quite low, except for behavior genetics.

With total N = 65 & r = .26: Power = 55.9%

Power: example in 1 meta-analysis

Power of primary studies in intelligence

The median power in intelligence research

Pretty bad, right?

@MicheleNuijten 10

Small study effects in meta-analysis

Infant habituation and recognition memory performance as predictors of later IQ (McCall, 1993)

11

Small Study Effect (130)

Decline Effect (131)

Citation Bias (126)

Conclusions

Power in intelligence research is low

Evidence for publication bias

Bad, but less bad than in other fields

Preprint: https://psyarxiv.com/ytsvw/

META-RESEARCH CENTER

Analyses

Table 3

Overview of the meta-meta-regressions we estimated in this paper to investigate different predictors for effect size that could potentially indicate bias. We estimated these bias-related patterns in five separate analyses.

Type of bias	"Predictor" in	Estimate of the mean parameter	Heterogeneity	
	$Fisher's Z_{ij} = a^j + b^j Predictor_{ij} + \varepsilon_{ij}$	across meta-analyses	of the estimate	
	,	[95% CI]	(SE)	
1. Small study effect	Standard error of primary study's effect size (SE)	0.68 [0.44; 0.92]	$\tau^2 = 0.71 (0.24)$	
2. US effect	US*SE	0.47 [0.01; 0.93]	$\tau^2 = 0.21 (0.75)$	
3. Decline effect	Order of publication	0.001 [-0.003; 0.004]	$\tau^2 = 0.00 (0.00)$	
4. Early-extremes	$deviation = Fisher's Z_{ij} - Fisher's Z_{j} ,$			
effect*	$deviation = a^j + b^j PublicationOrder_{ij} + \varepsilon_{ij}$	-0.001 [-0.005; 0.002]	$\tau^2 = 0.00 (0.00)$	
5. Citation bias	Citations per year	0.001 [-0.001; 0.003]	$\tau^2 = 0.00 (0.00)$	

^{*} We estimated the presence of early-extremes using a different dependent variable; instead of predicting the primary study' effect size itself, we predicted the deviation of the primary study effect size from the meta-analytic effect.

@MicheleNuijten 17