The Meta-Plot: A descriptive tool for meta-analysis

Meta-research center Tilburg

ICPS, Paris

7-9 March, 2019

Meta-research center Tilburg

https://metaresearch.nl/

Tilburg School of Social and Behavioral Sciences

Meta-Plot

A <u>descriptive tool</u> for meta-analysis, improving on existing tools (e.g. funnel plot), providing info on:

- 1) Sample size / power of primary studies
- 2) Estimate and CI of random-effects meta-analysis
- 3) Estimate as a function of studies' precision (cumulative meta-analysis → small-study effects)
- 4) Evidence of publication bias

Background

Many studies conducted on $X \rightarrow Y$

Studies differ in N&power, methods, designs, context, people; Field may be affected by publication bias

Meta-analysis: estimates of average and variance effect size, and moderator effects

Estimates may be influenced by publication bias (overestimation), and this influence is larger for lower N&power

Background

Hence, there is a need for a tool that summarizes ...

- Not only meta-analytic ES estimate + CI, but also
- Power & N of primary studies
- Sensitivity of ES estimate to precision of studies
- Evidence of publication bias
 - → Meta-Plot

Overview

(Cherry-picked) Example of a meta-analysis

Meta-plot for (cherry-picked) example

Meta-plot app

[Some other examples of meta-plot]

Cherry example

Meta-analysis of Rabelo et al. (2015) on the relation between the sensation of weight and moral judgement of importance

25 effect size, 23 significant; N from 30 to 100

$$g = 0.57 (p < .0001), I^2 = 0$$

Methods adjusting for publication bias

Selection model: g = .25 (CI .22-.29)

P-uniform: g = -.15 (CI -.63 to .19)

Cherry example

Egger's test of publication bias not significant (p = .10); p-uniform signals publication bias (p < .001)

(1) Sample size / power of primary studies

(2) Estimate and CI of random-effects meta-analysis

(3) ES estimate as function of studies' precision

(3) ... evidence of small study-effects?

(3) ... ES estimate for studies with certain power?

(4) Evidence of publication bias

- Showing expected value meta-analytic ES assuming:
 - (i) zero true effect size
 - (ii) extreme publication bias (only statistical significant effects in meta-analysis)
- Only show these expected values if <u>>80%</u> of results are statistically significant

(4) Evidence of publication bias

Meta-plot

15

(4) Evidence of publication bias

- (4) Evidence of publication bias
- → Results meta-analysis in line with zero true effect size in combination with extreme publication bias

Meta-Plot app

App at https://rvanaert.shinyapps.io/meta-plot/

Paper under construction (m.a.l.m.vanassen@uvt.nl)

